
P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 4 15 A U G U S T 1 9 6 3 

Complete Eigenvalue Spectrum for the Nucleation in a Ferromagnetic 
Prolate Spheroid 

AMIKAM AHARONI 

Department of Electronics, The Weizmann Institute of Science, Rehovoth, Israel 
(Received 27 March 1963) 

Curling, coherent rotation, and an appropriately defined buckling are proved to be the only three modes 
which might yield numerically smallest nucleation field in ellipsoids of revolution (both prolate and oblate), 
all the other possible eigenmodes yielding more negative nucleation fields. A lower bound for the buckling 
mode in a prolate spheroid is calculated by neglecting the transverse magnetostatic self-energy. In contra­
distinction to the limiting case of an infinite circular cylinder, in which coherent rotation never takes place, 
it is found that for prolate spheroid of any finite elongation, coherent rotation is the lowest eigenmode for 
small enough radii. Upper and lower bounds are given for the critical radius under which coherent rotation 
takes place, as a function of the elongation. Buckling is seen to take place at most in a rather small region 
of sizes between curling and coherent rotation. 

1. INTRODUCTION 

MAGNETIZATION reversal in a previously 
saturated ferromagnetic particle was shown by 

Brown1 to follow one of the eigenfunctions of a set of 
linear partial differential equations with boundary con­
ditions. The reversal starts at a certain value of the 
applied field, the so-called "nucleation field/' which is 
the least negative eigenvalue of this set of equations, 
and the reversal should follow the eigenmode associated 
with this eigenvalue. 

For the two limits of a prolate spheroid, namely, the 
sphere and the infinite circular cylinder, Brown1 could 
guess two solutions, coherent rotation and curling. For 
an infinite cylinder, Frei et at.2 suggested another mode, 
which they called "buckling." They showed that the 
magnetization could reverse by this mode more easily 
than by coherent rotation. The mode they studied was 
not an eigenmode of Brown's equation, which meant the 
nucleation field it yielded could not be a minimum, and 
a numerically smaller eigenvalue should have existed. 
However, a rigorous calculation3 showed the eigenvalue 
was only about 1% smaller than the value yielded by the 
buckling approximation, and the eigenmode highly 
resembled the assumed function. This exact eigenmode 
will, therefore, be referred to here as the buckling mode. 

For an infinite cylinder, the whole eigenvalue spec­
trum of Brown's equations has been studied,3 and it was 
found that only curling and buckling modes could yield 
numerically smallest eigenvalues. The buckling yields 
the numerically smallest eigenvalue when the cylinder 
radius is smaller than about 1.1 A^Ir1 (where A is the 
exchange constant, Is is the saturation magnetization), 
while curling yields the lowest eigenvalue for a radius 
larger than this value. In the other extreme case of a 
sphere, it has been proved4 that the lowest eigenmodes 

1 W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957). For a more 
complete list of references, see A. Aharoni, Rev. Mod. Phys. 34, 
227 (1962). 

2 E. H. Frei, S. Shtrikman, and D. Treves, Phys. Rev., 106, 446 
(1957). 

3 A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958). 
4 A. Aharoni, Suppl. J. Appl. Phys. 30, 70 (1959). 

are coherent rotation and curling, where the former is 
the lowest for a radius smaller than about \AAl,2I8~

l, 
while the latter is the smallest above this radius. 

The coherent rotation is an eigenmode for the general 
ellipsoid, in particular, for the prolate spheroid discussed 
here.5 The curling is also an eigenmode of an ellipsoid of 
revolution, and its eigenvalue has been calculated for 
the general prolate spheroid, as a function of elonga­
tion.4 In the Sec. 2, we shall show that just another 
eigenmode, analogous to the buckling, should be added 
to the picture, and all the other possible modes yield 
eigenvalues which are more negative than these three, 
so that they can never be reached. In Sec. 3 this buckling 
mode will be treated approximately. This approxima­
tion will be seen to yield reasonably close upper and 
lower bounds for the critical size for coherent rotation 
("single domain" behavior), and a lower bound for 
curling. Finally, in Sec. 4 some aspects of the analogous 
problem in oblate spheroid will be outlined. 

2. CURLING AND HIGHER MODES 

Consider a prolate spheroid made of a ferromagnetic 
material, and let its axis of symmetry be chosen as the 
z axis. Let the external field H be applied along the 
z axis, which is also assumed to be an easy axis for 
magnetocrystalline anisotropy energy, which can be 
either cubic or unidirectional, with a coefficient K. Let 
the direction cosines of the transverse magnetization, in 
a cylindrical-coordinate system r, <p, z, be ar and a?; and 
let U be the potential of surface and volume charges due 
to transverse magnetization. I t is then seen, by following 
the derivation of the equations,3 that in cylindrical 
coordinates the Brown equations are essentially the 
same as for the infinite cylinder, except for including the 
demagnetizing field due to surface charges in the 
saturated magnetization state along z. The nucleation 
field, Hn, is thus the least negative eigenvalue, / / , of the 

5 W. F. Brown, Jr., Magnetostatic Principles in Ferromagnetism 
(North-Holland Publishing Company, Amsterdam, 1962), Chap. 6. 
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following set of equations: 

(V'2_ t-2_ Ts2h)ar- It^daJdif-TrSdu/dt^Q, (la) 

(V/2-t-2-TS2h)a<p+2t-2dar/d<p-TrSt-1du/d<p = 0, (lb) 

V2u= 2Sldar/dt+t-l{ar-da<p/d<p)~], (lc) 

inside the spheroid. Outside, the potential fulfills the 
Laplace equation 

V ^ o u t - 0 . (2) 

On the boundary, 

dar/dn—dajdn — 0, (3a) 

Uin=Uont} (3b) 

2San=dUin/dn—duout/dn. (3 c) 
Here 

where 

d2 1 d Id2 d2 

V'2 = —+ + +— , (4) 
dt2 t dt t2d<p2 dp2 

= r/R, p=z/R, S^RIsA-1'2, 

H K N U (5) 
t= 1 , w = . 

2TIS IS2 2TT 2TTA1>2 

R is the radius of the spheroid in a direction perpen­
dicular to z, n is the normal to its surface, and N is the 
demagnetizing factor along z, 

Because of the cylindrical symmetry, the cp depend­
ence can be readily separated by writing 

ar^Ar(t,p)cos(ni<p~ <p0), 

a^==^(/,^)sin(w<£>~- <p0), 

u= V(t,p)cos(m<p— <po), 

(6a) 

(6b) 

(6c) 

where m is an integer, so that the <p dependence has the 
necessary periodicity of 2x. I t is seen that by using (6), 
the variable <p can be eliminated both from the equa­
tions and the boundary conditions. They can, therefore, 
be solved separately for every integral value of m. 

If w = 0 , the equation for A<p is separated from the 
rest and is 

-d2 1 d 1 S2 

—+ + 
.dt2 t dt t2 dp2 

•TS2JI \A0=O (7a) 

with the boundary condition 

dA(p/dn=0. (7b) 

This is the equation for the curling mode, the eigen­
values for which have already been computed for the 
case of a prolate spheroid,4 and are reproduced in Fig. 1. 
The other equations and boundary conditions, involving 
A r and V need to be treated, since it is readily seen that 
by dropping the positive term of transverse magneto-
static self energy, these equations reduce to (7). There­
fore, if this term is retained in the energy, the nucle-
ation field for this other mode cannot be less negative 

than the curling. One can, therefore, conclude that for 
m=0 the lowest eigenvalue is obtained for u=ar=

z 0 and 
is the eigenvalue of (7). 

For m^2, when the transverse magnetostatic self-
energy is again dropped and (6) is substituted in (1) and 
(3), one obtains the following two separate equations: 

•a2 i a (mi l ) a2 

— I _ 1 T s 2 h 
.dt2 t dt t2 dp2 

(ArdzA^^O (8a) 

with the boundary conditions 

d(Ard=Av)/dn=0. (8b) 

These equations are the same as the curling equation 
(7), except for the factor multiplying —1~2, which is 
larger for m^2 than for the curling. They, thus, come 
under the following mathematical theorem proved by 
Titchmarsh6: 

Let the equation 

\y2+\-q(x1,x2,.--)^Q 

be defined in any region E, with the boundary condi­
tions7 d\p/dn = 0. Then each of its eigenvalues, X, is non-
decreasing as q is increased, i.e., when q is replaced by 
any other function of space Q(xi,x2,• • • )> provided q^Q 
throughout E. 

In particular, in our case, —h for Eq. (8) cannot be 
smaller than the corresponding ~h for Eq. (7). Thus, 
for m ̂  2 no eigenvalue can be numerically smaller than 
for the curling, even when the transverse self-magneto-
static energy is dropped, even less so when this energy 
is retained. 

I t has, thus, been proved that for m^l in (6), the 
lowest eigenmode is the curling as given by (7). I t 
should be noted that the proof did not use the prolate 
shape, although the cylindrical symmetry is essential. 
Thus, the proof applies to oblate as well as to prolate 
spheroids. I t also covers special cases of it which were 
proved separately for the cylinder,3 the unidirectional 
cylinder8 and the sphere.4 I t also applies for the case 
when K is a function of space and, thus, includes a 
recent model for nucleation around dislocations,9 where 
a special case of this theorem was proved numerically. 

Besides the curling, one is, thus, left with the case 
m= 1. In the infinite cylinder3 this yielded two modes of 
interest, namely, the coherent rotation and the buck­
ling. We shall, therefore, give the name "buckling" in 
this case too, to the mode, orthogonal on the coherent 

6 E. C. Titchmarsh, Eigenfunction Expansions Associated with 
Second Order Differential Equations (Oxford University Press, 
London, 1958), Part II, pp. 88-90. 

7 The theorem is stated in Ref. 6 for boundary conditions ^ = 0. 
However, its proof uses only the condition that xpd\p/dn vanishes 
on the surface of E, and can, therefore, be used for either one of 
these boundary conditions. 

8 A. Aharoni, E. H. Frei, and S. Shtrikman, J. Appl. Phys. 30, 
1956 (1959). 

9 C. Abraham and A. Aharoni, Phys. Rev. 128, 2496 (1962). 
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rotation, which yields the numerically smallest eigen­
value when m=l. This will be treated in the next part. 

3. MAGNETIZATION BUCKLING 

Let (6), with m~ 1, be substituted in (1), (2), and (3), 
changing over from the parameters A rjA <p to 

Bi=AT+AH>^ B2=Ar—A(p. (9) 

Let the cylindrical coordinate t,p, be transformed to 
prolate spheroidal coordinates10 according to 

/ = ( 1 - T J 2 ) 1 / 2 ( £ 2 - 1 ) 1 / 2 ( £ O 2 - 1 ) - 1 / 2 , (10a) 

P=mt-Vrw, (iob) 
where £= £o [which is a prolate spheroid with radii 1 and 
£o(£o2—1)-1/2, respectively, in the reduced t,p coordinate 
system] represents the surface of the ferromagnetic 
particle. The equations inside the material, i.e., for 
£ ̂  £o are then 

{V 2-4(^ 2-7 7
2)( l -7 ?

2)- 1(£ 2- l )~ 1 

+c*(e-V*)}B1+TrM(L1-L2)V=0, ( l la ) 

{V2+c^e-V2)}B2~TM(L1+L2)V=0, ( l ib) 

{V2_(e_r)2)(e_1)-i(1_7]2)-i}V 

-M{2L1B1+L2(B1+B2)} = 0, ( l ie) 
where 

d d d d 
V 2 = _ (£2_ 1 ) __ + _ ( 1 _ 7 ? 2 ) __ 7 ( 1 2 a) 

<9£ d£ drj drf 

Li= ( « s - i j * ) ( l - i j , ) - l f t ( ? - l ) - l f t , (12b) 

£*= (e-i)1/2(i-*?2)I/2(£a/af-i; a/at,), (12c) 
c « = _ x 5 » A ( ^ - l ) - i , (13a) 

J / = 5 ( W - 1 ) ~ 1 « . (13b) 

In the same way, one obtains 

{ v » - ( j « - ^ ) ( ^ - l ) - i ( l - ^ ) - i } 7 = 0 , £>£o (14) 

and on the boundary, £=£0: 

dBt/d^dBi/d^O (15a) 

F i n = Fout (15b) 
dVin/dZ-dVont/dZ 

= M(JB1+JB2)?o(?o2-l)-1/2(l-r?2)1 '2. (15c) 

One solution of this set of equations can be written 
immediately, namely, 

J 5 I = 0 , 2?2=const, 

F i n = ((?Ba/2irM)(l-ffl)1l*(e-iy'a- (16a) 

This is the coherent rotation. I t yields, after using the 
boundary conditions, the eigenvalue 

- ^ = l o { £ o - 1 / 2 ( £ o 2 - D I n n ( € o + l ) / t t o - l ) ] } . (16b) 

Being an eigenmode, it should be orthogonal on all the 
other eigenmodes of the set of Eqs. (11), (14), and (15). 
The buckling mode, according to our definition, is thus 
the solution of this set of equations, which is orthogonal 
to (16), and yields the smallest eigenvalue c. 

I t is always possible to.expand the solution as a series 
in a complete orthogonal set of functions. We chose 
these functions to be the eigenmodes of the homogeneous 
part of ( l la) and ( l ib ) with the boundary conditions 
(15a). This implies11 

£ i = E Z aknS2n(cknV\v)R2nV(cknv\ $ (17a) 
n = 2 k=l 

B,= E Z bkMCkn™, ri)Ron<»(Ck»m, 0 

+ E hoSoo(ckom,v)Rooa)(cko
(0\ I ) . (17b) 

&=2 

Here Ckn{m) are the zeros of the derivative of Rmn
{1) in 

increasing order, i.e., 

LdRmnw(ckn™,€)/d£\Mo=0, ck+hn^>cknw. (18) 

I t should be noted that in the second sum of (17b), the 
summation starts with k — 2, rather than k=l. This 
means that the term with Ci0

(0) has been excluded from 
the expansion. However, £io(0) = 0, and 

22oo<1)(0,S) = 5'oo(0,i7) = l, 

which means that the term missing in (17b) is a con­
stant. Now, B2— const is the coherent rotation, and as 
mentioned before, is orthogonal on all the other eigen-
functions, and can thus be treated separately. The 
expansion (17) is, therefore, the most general form for 
the solution of our set of equations, which does not 
include the coherent rotation mode. 

In principle, (17), (14), and (15) determine uniquely 
the potential V, both inside and outside of the spheroid. 
When substituted in (12), one should, therefore, obtain 
a set of algebraic linear equations in the parameters 
akn, bkn, then obtain an equation for the eigenvalues by 
equating to zero the determinant of the coefficients of 
akn and bkn- However, this is cumbersome. Instead, we 
shall get just a lower bound for the buckling eigenvalue, 
by neglecting the transverse magnetostatic self-energy. 
I t is readily seen from the derivation of the equations, 
that neglecting this energy means writing 7 = 0 in 
( l la ) , ( l ib) and disregarding ( l ie) , (14), (15b), and 
(15c). In this case the determinant is diagonalized, and 
one obtains for the eigenvalues 

* c=ckn
{0) or c=ckn

(2), 

whereas the curling eigenvalue was4 in the present 
notation, 

10 Carson Flammer, Spheroidal Wave Functions (Stanford 
University Press, Stanford, California, 1957). 11 The notations used here are according to Ref. 10. 
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According to the theorem of Titchmarsh, mentioned 
in Sec. 2, 

smallest ^n(2)^smallest Ckna)^smallest Ckn(0\ (19) 

so that one need consider only the smallest of the eigen­
values 

c=cln
(0), n^l, or c20

(0) (20) 

[since ci0
(0) has been excluded from (17), before neglect­

ing the magnetostatic energy]. 
In the analogous treatment of the sphere,4 all the 

eigenvalues analogous to (20) were not smaller than the 
curling eigenvalue [this does not contradict (19), since 
the smallest eigenvalue has been removed]. For the 
sphere, therefore, the buckling eigenvalue is larger than 
the curling one, and can thus be ignored. This is not the 
case for prolate spheroid, where (20) yields eigenvalues 
smaller than those of the curling. Using tabulated 
spheroidal functions, and their expansions10 the smallest 
eigenvalue, £n(0), was computed. It is plotted in Fig. 1 
as a function of the elongation, m=£0(£o2—1)~1/2, to­
gether with the curling eigenvalue for comparison. 

It is seen from Fig. 1 that the buckling eigenvalues 
are always smaller than the curling ones (except for the 
sphere, m = l, where they are equal). However, this is 
only a lower bound, and the actual buckling eigenvalue 
should certainly become larger than the curling ones, at 
least for large enough S. It is even possible that for 
certain elongations the buckling eigenvalue would turn 
out to be larger than the curling one for every 5, as is 
the case for the sphere. Near the sphere, i.e., for not too 
elongated particles, the difference between the two 
curves of Fig. 1 does not justify going into detailed 
calculations of the complicated buckling mode. When 
1/m—*0, i.e., for very elongated particles, the difference 
between the curves becomes much larger. However, in 
this region the behavior cannot be essentially different 
from that of the infinite cylinder, where it is known3 

I 1 1 1 1 1 1 1 1 1 1 

]A\ CURLING _ J 

c J X I 

% 0.8 h- / A 

0.61- / -j 

0.4h. yS \ 

0 J ./BUCKLING J 
' r ^^y^ (LOWER BOUND) | 

n l • — H - " ^ ! i \ i I t ' i 1 
0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIG. 1. The reduced nucleation field hn in terms of the reduced 
radius S, both defined in (5), as a function of the reciprocal of 
elongation, l/tn, for a prolate spheroid. 

1 1 1 I 1 1 1 r 

FIG. 2. Upper and lower bounds of the critical reduced size S, 
defined by Eq. (5), for coherent rotation, as functions of the 
reciprocal of elongation, 1/m, in a prolate spheroid. The possible 
modes in the three regions separated by the curves, are marked on 
the figure. 

that the buckling eigenvalues are very close to coherent 
rotation, so that again detailed calculation does not 
seem necessary. 

The simplest mode to treat theoretically after nucle­
ation is the coherent rotation, and has, therefore, been 
used in many calculations. From Fig. 1 we can get upper 
and lower bounds for the size for which these calcula­
tions are valid, by equating each of the modes to the 
coherent rotation eigenvalues. The results are plotted in 
Fig. 2. In this figure the lower curve represents the size 
in which coherent rotation nucleation fields just equals 
that of the lower bound for buckling. Below this curve, 
therefore, the coherent rotation is the lowest mode. The 
upper curve represents the radius at which nucleation 
by coherent rotation equals that by curling. Above this 
curve, therefore, coherent rotation can no more take 
place. Again, the upper and lower bounds are reasonably 
close together to give a good approximation for the 
critical size, especially since the two extremes (m=\ 
and m— °°) on the lower curve are exact. In particular, 
it is seen that for the range of superparamagnetism12 the 
use of coherent rotation is justified, except for the very 
elongated particles. 

Above the upper curve in Fig. 2, either buckling or 
curling can take place. However, for the infinite cylin­
der, the turn over from buckling to curling is only very 
slightly above this curve, and for the sphere no buckling 
takes place at all. It can, thus, be assumed that just 
above the upper curve, curling gives the lowest nucle­
ation, thus restricting the buckling to part of the region 
between the curves, which can be regarded as an in­
significant transition region between curling and co­
herent rotation. 

12 C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S 
(1959). 



1482 A M I K A M A H A R O N I 

4. REMARKS ON OBLATE SPHEROID 

The calculations of Sec. 2 apply to oblate as well as to 
prolate spheroids. In this case too one has therefore just 
the curling, represented by (7), the coherent rotation 
which is known, and the mode analogous to the buckling 
treated in Sec. 3, which can be readily represented by 
transforming (11), (14), and (15) to oblate spheroidal 
coordinates. The fact that the curves in Fig. 1 cut at the 
sphere shows that for oblate spheroids the mode shown 
in Fig. 1 is higher than the curling, since it seems un­
likely that the curves would cross again. However, it is 

INTRODUCTION 

THE dependence of the resistance of circular wires 
on diameter has been studied theoretically1-7 

and also experimentally6,8,9 for several metals. Experi­
mental data of this type have frequently been analyzed 
by means of the Nordheim-Fuchs-Dingle1,2 formula, 

Peii=Pb+apbl/d, (1) 

which (assuming diffuse surface scattering) expresses 

* Present address: Department of Physics, Ohio State Uni­
versity, Columbus, Ohio. 

1 K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938). 
2 R. B. Dingle, Proc. Roy. Soc. (London) A201, 545 (1950). 
3 E. H. Sondheimer, Suppl. Phil. Mag. 1, 1 (1952). 
4 B. Luthi and P. Wyder, Helv. Phys. Acta 33, 667 (1960). 
* F. J. Blatt and H. G. Satz, Helv. Phys. Acta. 33, 1007 (I960). 
6 B. N. Alexandrov and M. I. Kaganov, Zh. Eksperim. i Teor. 

Fiz. 41, 1333 (1961)[translation: Soviet Phys.—JETP 14, 948 
(1962)]. The result appearing here differs from ours by a factor 
of h2 because we consider the Fermi surface in K space rather than 
the similar surface in p space. 

7 M. Ya. Azbel' and R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 
42, 632 (1962) [translation: Soviet Phys.—JETP 15, 1133 
(1962)]. 

8 J. L. Olsen, Helv. Phys. Acta 31, 713 (1958). 
8 L. R. Weisberg and R. M. Josephs, Phys. Rev. 124, 36 (1961). 

possible that one of the other eigenvalues, which is 
larger for prolate spheroids, would also cross these 
curves at the sphere, and would thus become smaller 
than curling for oblate spheroids, so that there still 
exists the possibility of a third mode. For lack of ade­
quate tabulation of the oblate functions, this possibility 
could not be checked. 
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the effective resistivity, peff, of the wire in terms of the 
bulk resistivity, p*>, the mean free path, /, and the diame­
ter, d. a is a dimensionless function of l/d which is 
unity in the Nordheim formula and varies from 0.75 to 
1 as l/d goes from zero to infinity in the Fuchs-Dingle 
formulation. Equation (1) is often used to calculate the 
product phi and the mean free path from size effect 
data.10 The value of pil obtained in this way is usually 
considerably larger than the value derived from 
anomalous skin effect data on polycrystalline samples. 

The purpose of this paper is to report measurements 
of the size effect in polycrystalline indium wires and to 
point out that Eq. (1) is not applicable to these data. 
An equation similar to (1) [Eq. ( lc)] , which is believed 
to be valid for the residual resistivity of thick "one-
dimensionally" polycrystalline wires of metals having 
arbitrary Fermi surfaces and an arbitrary dependence 
of the free path l(kf) (averaged over all final wave 
vectors), on the initial wave vector is derived. This 
formula is probably more appropriate to the case of 
"annealed" polycrystalline wires than is Eq. (1). 

10 J. L. Olsen, Electron Transport in Metals (Interscience Pub 
lishers, Inc., New York, 1962), Chap. 4, p. 84. 
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Size Effects in the Resistivity of Indium Wires at 4.2°K 
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(Received 18 March 1963) 

Measurements are reported of the dependence of the resistance (at 4.2°K) of high-purity polycrystalline 
indium wires on the wire diameter. Data, which were taken on recrystallized wires extruded through dies 
of various sizes, and also on a single extruded wire gradually reduced in diameter by etching, are compared 
with those of Olsen. It is pointed out that any variation of the bulk electron free path over the Fermi surface 
must be taken into account in the analysis of size effect data on wires unless they are extremely small in 
diameter. A calculation of the size effect at 0°K in monocrystalline wires and in "unidimensionally" poly­
crystalline wires having a diameter large compared to the mean free path is made for an arbitrary Fermi 
surface and free path anisotropy. The result of the calculation for the polycrystalline case, which is limited 
to metals having isotropic bulk conductivities, is similar to the Fuchs-Dingle result for the isotropic case 
except that the effective resistivity is much more strongly size dependent when a large mean free path 
anisotropy exists. It is concluded on the basis of this derivation that the size effect data on indium wires 
and anomalous skin effect data can be reconciled if a large anisotropy in the mean free path exists. 


